Параллельные прямые признаки доказательства

Параллельные прямые, признаки и условия параллельности прямых

Параллельные прямые признаки доказательства
Прямая, плоскость, их уравнения

Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых.

Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Параллельные прямые – основные сведения

Напомним сначала определения параллельных прямых, которые были даны в статьях прямая на плоскости и прямая в пространстве.

Две прямые на плоскости называются параллельными, если они не имеют общих точек.

Две прямые в трехмерном пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать аb.

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b, а также, что прямая b параллельна прямой a.

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

К началу страницы

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых.

Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых.

То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых углов. В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы. Покажем их на чертеже.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.

Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7-9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.

Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п.

Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве.

Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

К началу страницы

Если на плоскости задана прямоугольная декартова система координат, то прямую линию в этой системе координат определяет уравнение прямой на плоскости некоторого вида. Аналогично прямую линию в прямоугольной системе координат в трехмерном пространстве задают некоторые уравнения прямой в пространстве.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy. В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к условию коллинеарности двух векторов (направляющих векторов прямых или нормальных векторов прямых) или к условию перпендикулярности двух векторов (направляющего вектора одной прямой и нормального вектора второй прямой).

Таким образом, если и — направляющие векторы прямых a и b, а и — нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t — некоторое действительное число.

В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b — , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b — , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид .

Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны.

И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Параллельны ли прямые и ?

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что — нормальный вектор прямой , а — нормальный вектор прямой .

Эти векторы не коллинеарны, так как не существует такого действительного числа t, для которого верно равенство ().

Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

нет, прямые не параллельны.

Являются ли прямые и параллельными?

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1), координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых.

Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим скалярное произведение векторов и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых.

Таким образом, прямые параллельны.

заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и — направляющие векторы прямых a и b соответственно, то для параллельности прямых a и b необходимо и достаточно, чтобы существовало такое действительное число t, при котором справедливо .

Разберемся с применением условия параллельности прямых в пространстве при решении примера.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Некогда разбираться?

Закажите решение

К началу страницы

Источник: http://www.cleverstudents.ru/line_and_plane/parallel_lines.html

Признаки параллельности прямых . урок. Геометрия 7 Класс

Параллельные прямые признаки доказательства

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Две прямые на плоскости называются параллельными, если они не пересекаются. Обозначается это так: .

Рис. 1

Отрезки AB и CD, лежащие на параллельных прямых, называются параллельными.

Лучи, лежащие на параллельных прямых, также называются параллельными.

Задумаемся, неужели а и b нигде не пересекутся? И существуют ли такие прямые? Ведь а и b не ограничены. И в соседней комнате не пересекутся? И на луне?

Оказывается, такие прямые существуют.

Мы доказывали, что перпендикулярная прямая а к прямой с и перпендикулярная прямая b к прямой с нигде не пересекаются (Рис. 2).

Рис. 2

То есть две перпендикулярные прямые к одной и той же третьей прямой нигде не пересекутся. Оказывается, для этих прямых есть термин.

.

Рассмотрим важную геометрическую конструкцию, в которой две прямые а и рассекаются прямой с (Рис. 3).

Рис. 3

с – секущая а и b. Это означает, что она пересекает и а, и b.

Возникает много углов (1, 2, 3, 4, 5, 6, 7, 8).

Эти углы называются:

накрест лежащие углы: , ;

односторонние углы: , ∠3 и ∠6;

соответственные углы: , , , .

 – смежные углы.

 – вертикальные углы.

Сформулируем и докажем первый признак параллельности прямых.

Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Итак, даны две прямые а и b. Прямая АВ рассекает эти прямые и  (Рис. 4).

Рис. 4

Докажем, что .

Доказательство:

Рис. 5

Возьмем середину отрезка АВ – точку О – и опустим перпендикуляр ОН на прямую а. Получим точку Н. Получим отрезок АН. Отложим от точки В по прямой b отрезок, равный длине отрезка АН. Получим точку , причем .

Имеем два треугольника  и . Эти треугольники равны по первому признаку (то есть по двум сторонам и углу между ними): (по условию), (по построению), ОА = ОВ (по построению).

Из равенства треугольников следует, что . А значит – это продолжение ОН, то есть точки О, Н и  лежат на одной прямой.

Также . Значит, прямая Н перпендикулярна к прямой b.

Итак, мы имеем, что , . А значит, , что и требовалось доказать.

Второй признак параллельности прямых

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая,.

Рис. 6

Доказательство:

Значит, .

Применим первый признак параллельности прямых и получим, что .

Третий признак параллельности прямых

Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Имеем: а, b, с – прямые; с – секущая, (Рис. 7).

Рис. 7

Доказательство:

Значит,  .

Применим первый признак параллельности прямых и получим, что .

Признаки параллельности прямых используются для решения разных задач.

Рассмотрим пример:

а, b, с – прямые; с – секущая,,  (Рис. 8)

Рис. 8

Сведем к одному из признаков параллельности прямых.

Следовательно,. По третьему признаку параллельности прямых.

На этом уроке мы рассмотрели понятие параллельных и прямых и разобрали признаки параллельности прямых, научились их применять. На следующем занятии мы разберем свойства параллельных прямых.

Список рекомендованной литературы

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5 изд. – М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.

Рекомендованные ссылки на интернет-ресурсы

Рекомендованное домашнее задание

  1. Нарисуйте произвольный треугольник АВС. Отметьте точку М на стороне АВ. Через точку М проведите прямые, параллельные двум другим сторонам.
  2. Прямая АВ пересекает прямую CD в точке А, а прямую MN в точке В. . Параллельны ли прямые CD и MN?
  3. В треугольнике АВС ВК – биссектриса. Точка К  принадлежит АС. Точка М – середина стороны ВС. Доказать, что .

Источник: https://interneturok.ru/lesson/geometry/7-klass/parallelnye-pryamye/priznaki-parallelnosti-pryamyh

Признаки параллельности двух прямых

Параллельные прямые признаки доказательства

Рассмотрим две прямые и , которые пересекает в двух точках третья прямая (Рис.1). Прямая называется секущей по отношению к прямым и .

При пересечении прямых и секущей образуется восемь углов, которые обозначены цифрами на Рис.2

Некоторые пары из этих углов имеют специальные названия:

накрест лежащие углы: 3 и 5, 4 и 6;

односторонние углы:4 и 5, 3 и 6;

соответственные углы:1 и 5, 4 и 8, 2 и 6, 3 и 7.

1. Теорема

Если при пересечении двух прямых секущейнакрест лежащие углы равны, то прямые параллельны.

Дано: прямые и , АВ — секущая, 1 и 2 — накрест лежащие, 1 = 2 (Рис.3).

Доказать: .

Доказательство:

1 случай

Предположим, что 1 = 2 = 900, т.е. эти углы прямые, получим АВ и АВ (Рис.4), следовательно, (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны).

2 случай

Предположим, что 1 и2 — не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН к прямой и продолжим его до пересечения с прямой , точку пересечения ОН с прямой обозначим Н1 (Рис. 5).

Получим ОНА = ОН1В по 2 признаку равенства треугольников (углы3 и 4 вертикальные, т.к.

получены при пересечении двух прямых АВ и НН1, а вертикальные углы равны друг другу, т.е. 3 = 4, АО = ОВ, т.к.

О — середина АВ, 1 = 2 по условию), следовательно, 5 =6, значит, 6 — прямой, также как и 5 (т.к по построению ОН ).

Получаем, НН1 и НН1, значит  (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны). Что и требовалось доказать.

2. Теорема

Если при пересечении двух прямых секущейсоответственные углы равны, то прямые параллельны.

Дано: прямые и , АВ — секущая, 1 и 2 — соответственные, 1 = 2 (Рис.6).

Доказать: .

Доказательство:

По условию 1 = 2 и 2 = 3, т.к.они вертикальные, откуда 1 = 3, при этом углы 1 и 3 накрест лежащие, следовательно,  (см. теорему 1). Что и требовалось доказать.

3. Теорема

Если при пересечении двух прямых секущейсумма односторонних углов равна 1800, то прямые параллельны.

Дано: прямые и , АВ — секущая, 1 и 2 — односторонние, 1 + 2 = 1800 (Рис.7).

Доказать: .

Доказательство:

Углы 3 и 2 — смежные, значит по свойству смежных углов 3 + 2 = 1800, откуда 3 = 1800 — 2, при этом 1 + 2 = 1800, откуда 1 = 1800 — 2, тогда 1 = 3, а углы 1 и 3 накрест лежащие, следовательно, (см. теорему 1). Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Параллельные прямые

Практические способы построения параллельных прямых

Аксиомы геометрии

Аксиома параллельных прямых

Теорема о накрест лежащих углах

Теорема о соответственных углах

Теорема об односторонних углах

Теорема об углах с соответственно параллельными сторонами

Теорема об углах с соответственно перпендикулярными сторонами

Параллельные прямые

Правило встречается в следующих упражнениях:

7 класс

Задание 191, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 206, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 4, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 13, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 11, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 430, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 8, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 628, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 853, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1038, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2019

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/3387

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7-9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е.

, чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д.

Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a→=(ax, ay) и b→=(bx, by) являются направляющими векторами прямых a и b;

и nb→=(nbx, nby) являются нормальными векторами прямых a и b, то указанное выше необходимое и достаточное условие запишем так: a→=t·b→⇔ax=t·bxay=t·by или na→=t·nb→⇔nax=t·nbxnay=t·nby или a→, nb→=0⇔ax·nbx+ay·nby=0, где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A1x+B1y+C1=0; прямая b  — A2x+B2y+C2=0. Тогда нормальные векторы заданных прямых будут иметь координаты (А1, В1) и (А2, В2) соответственно. Условие параллельности запишем так:

A1=t·A2B1=t·B2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y=k1x+b1. Прямая b — y=k2x+b2. Тогда нормальные векторы заданных прямых будут иметь координаты (k1, -1) и (k2, -1) соответственно, а условие параллельности запишем так:

k1=t·k2-1=t·(-1)⇔k1=t·k2t=1⇔k1=k2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны.

И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x-x1ax=y-y1ay и x-x2bx=y-y2by или параметрическими уравнениями прямой на плоскости: x=x1+λ·axy=y1+λ·ay и x=x2+λ·bxy=y2+λ·by.

Тогда направляющие векторы заданных прямых будут: ax, ay и bx, by соответственно, а условие параллельности запишем так:

ax=t·bxay=t·by

Разберем примеры.

Пример 1

Заданы две прямые: 2x-3y+1=0 и x12+y5=1. Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x12+y5=1⇔2x+15y-1=0

Мы видим, что na→=(2, -3) — нормальный вектор прямой 2x-3y+1=0, а nb→=2, 15- нормальный вектор прямой x12+y5=1.

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t, при котором будет верно равенство:

2=t·2-3=t·15⇔t=1-3=t·15⇔t=1-3=15

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y=2x+1и x1=y-42. Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x1=y-42 к уравнению прямой с угловым коэффициентом:

x1=y-42⇔1·(y-4)=2x⇔y=2x+4

Мы видим, что уравнения прямых y = 2x + 1 и y = 2x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2x + 1, например, (0, 1), координаты этой точки не отвечают уравнению прямой x1=y-42, а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2x + 1 это вектор na→=(2, -1), а направляющий вектором второй заданной прямой является b→=(1, 2). Скалярное произведение этих векторов равно нулю:

na→, b→=2·1+(-1)·2=0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности.

Иначе говоря, если a→=(ax, ay, az) и b→=(bx, by, bz)являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t, чтобы выполнялось равенство:

a→=t·b→⇔ax=t·bxay=t·byaz=t·bz

Пример 3

Заданы прямые x1=y-20=z+1-3 и x=2+2λy=1z=-3-6λ. Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a→ и b→ заданных прямых имеют координаты: (1, 0, -3) и (2, 0, -6).

Так как:

1=t·20=t·0-3=t·-6⇔t=12, то a→=12·b→.

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник: https://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/parallelnye-prjamye-priznaki-i-uslovija-parallelno/

Урок

Параллельные прямые признаки доказательства
Бесплатно

урок «Признаки параллельности двух прямых» содержит доказательство теорем, которые описывают признаки, означающие параллельность прямых.

При этом в видео описывается 1) теорема о параллельности прямых, при которых секущей созданы равные углы, 2) признак, означающий параллельность двух прямых — по равным образованным соответственным углам, 3) признак, означающий параллельность двух прямых в случае, когда при их пересечении секущей односторонние углы в сумме составляют 180°.

Задача данного видеоурока – ознакомить учеников с признаками, означающими параллельность двух прямых, знание которых необходимо для решения многих практических задач, наглядно представить доказательство данных теорем, формировать навыки в доказательстве геометрических утверждений.

Преимущества видеоурока связаны с тем, что при помощи анимации, ого сопровождения, возможности выделения цветом, он обеспечивает высокую степень наглядности, может послужить заменой подачи стандартного блока нового учебного материала учителем.

Начинается видеоурок с выведения на экран названия. Перед описанием признаков параллельности прямых ученики знакомятся с понятием секущей. Дается определение секущей как прямой, которая пересекает другие прямые. На экране изображены две прямые a и b, которые пересекаются прямой с.

Построенная прямая с выделена синим цветом, акцентируя внимание на том, что они является секущей данных прямых а и b. Для того чтобы рассматривать признаки параллельности прямых необходимо более детально ознакомиться с областью пересечения прямых.

Секущая в точках пересечения с прямыми образует 8 углов ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, ∠8, анализируя соотношения которых можно вывести признаки параллельности данных прямых. Отмечается, что углы ∠3 и ∠5, а также ∠2 и ∠4 называются накрест лежащими.

Дается подробное объяснение при помощи анимации расположения накрест лежащих углов как углов, которые лежат между параллельными прямыми, и примыкают к прямым, располагаясь накрест. Затем дается понятие односторонних углов, в число которых входят пары ∠4 и ∠5, а также ∠3 и ∠6. Также указываются пары соответственных углов, которых на построенном изображении 4 пары — ∠1-∠5, ∠4-∠8, ∠2-∠6, ∠3-∠7.

В следующей части видеоурока рассматриваются три признака параллельности любых двух прямых. На экран выводится первое описание.

Теорема утверждает, что при равенстве накрест лежащих углов, образуемых секущей, данные прямые будут параллельны. Утверждение сопровождается рисунком, на котором изображены две прямые а и b и секущая АВ.

Отмечается, что образуемые накрест лежащие углы ∠1 и ∠2 равны между собой. Данное утверждение требует доказательства.

Наиболее просто доказываемый частный случай – когда данные образуемые накрест лежащие углы являются прямыми.

Это означает, что секущая является перпендикуляром к прямым, а по уже доказанной теореме в этом случае прямые а и b не будут пересекаться, то есть являются параллельными.

Доказательство для данного частного случая описывается на примере изображения, построенного рядом с первым рисунком, выделяя важные детали доказательства при помощи анимации.

Для доказательства в общем случае необходимо проведение дополнительного перпендикуляра из середины отрезка АВ на прямую а. Далее на прямой b откладывается отрезок ВН1, равный отрезку АН. Из полученной при этом точки Н1 проводится отрезок, соединяющий точки О и Н1.

Далее рассматриваются два треугольника ΔОНА и ΔОВН1, равенство которых доказывается по первому признаку равенства двух треугольников. Стороны ОА и ОВ равны по построению, так как точка О отмечалась как середина отрезка АВ. Стороны НА и Н1В также равны по построению, так как мы откладывали отрезок Н1В, равный НА. А углы ∠1=∠2 по условию задачи.

Так как образованные треугольники равны между собой, то и соответствующие оставшиеся пары углов и сторон также равны между собой. Из этого следует, что и отрезок ОН1 является продолжением отрезка ОН, составляя один отрезок НН1.

При этом отмечается, что так как построенный отрезок ОН – перпендикуляр к прямой а, то соответственно и отрезок НН1 является перпендикулярным к прямым а и b. Данный факт означает, используя теорему о параллельности прямых, к которым построен один перпендикуляр, что данные прямые а и b являются параллельными.

Следующая теорема, требующая доказательства – признак равенства параллельных прямых по равенству соответственных углов, образованных при пересечении секущей. Утверждение указанной теоремы выведено на экран и может быть предложено под запись учениками. Доказательство начинается с построения на экране двух параллельных прямых а и b, к которым построена секущая с.

Выделенная на рисунке синим цветом. Секущей образованы соответственные углы ∠1 и ∠2, которые по условию равны между собой. Также отмечаются смежные углы ∠3 и ∠4. ∠2 по отношению к углу ∠3 является вертикальным углом. А вертикальные углы всегда равны.

К тому же углы ∠1 и ∠3 являются накрест лежащими между собой – их равенство (по уже доказанному утверждению) означает, что прямые а и b параллельны. Теорема доказана.

Последняя часть видеоурока посвящена доказательству утверждения о том, что если сумма односторонних углов, которые образованы при пересечении двух некоторых прямых секущей прямой, будет равняться 180°, в этом случае данные прямые будут параллельны между собой.

Доказательство демонстрируется, используя рисунок, на котором изображены прямые а и b, пересекающиеся с секущей с. Образованные пересечением углы отмечены аналогично предыдущему доказательству. По условию, сумма углов ∠1 и ∠4 равна 180°. При этом известно, что сумма углов ∠3 и ∠4 равна 180°, так как они являются смежными.

Это означает, что углы ∠1 и ∠3 равны между собой. Данный вывод дает право утверждать, что прямые а и b параллельны. Теорема доказана.

урок «Признаки параллельности двух прямых» может быть использован учителем в качестве самостоятельного блока, демонстрирующего доказательства названных теорем, заменяющего объяснение учителя или сопровождающего его. А подробное объяснение дает возможность использовать материал для самостоятельного изучения учениками и поможет в объяснении материала при дистанционном обучении.

Источник: https://urokimatematiki.ru/urok-priznaki-parallelnosti-dvuh-pryamih-512.html

Адвокат Аванесов
Добавить комментарий